Cyber-Überwachung: Technische Möglichkeiten und Grenzen

Bernhard M. Hämmerli mit Unterstützung von Eirik Bae
Thesis: Cyber Surveillance Architectures: What is behind the curtain?

Master thesis under supervision of Prof. Hämmerli

Student: Eirik Bae

Career at Gjøvik University College:

- Bachelor of Science in Information Security (2009 - 2012)
- Master in Information Security (2012 - 2014)
Content

Part I: Basic technical attack options by
 Software, Development Kit, Tools, Hardware, Updates, any Combination
 Transferring Data

Part II: Attacks in action
 A: Without supplier support
 Vulnerabilities, Attack Cycle
 B: With supplier support
 Terms & Condition, Server Access, “Lawful Interception”
 Mitigation and impact on common attack categories

Part III: Information superiority and “Qui Bono”
 understanding the current situation …

Appendix
Part I: Basic technical attack options
Software Attack

- Apps and Application (these are most vulnerable)
- Middleware
- Virtualization
- Hardware abstraction
- Operation System OS
- Drivers (of OS and of peripherals)
- Firmware

➔ Believers in software audit reviews: Attention!!!
Path from code to Executable:
another option to inject malware

What happens if you change?
- C pre-processor
- C Compiler
 (*Ken Thompson, 1984)
- Assembler
- Linker
- Loader

(Image: Tenouk), *ACM: http://dl.acm.org/citation.cfm?id=358210
Deceptive Software assessments:
Are tools clean?

- Source code audit: King’s way?
 - A lot of work
 - Unclear: Did we find everything?

- A lot of tools are used for the assessment:
 - Task manager
 - Debugger
 - Source code analysis tools
 - Source code navigators
 - Binary navigation tools
 - Fuzz testers
 - Sandboxing
The Syria attack

As an example of monitoring tool manipulation

Syria nuclear plant (bomb production) should be bombed not loosing too many airplanes ... how to protected against strong air defense weapons?
Add-on Hardware für Zusatzfunktionalität

Referenzröntgenbild eines Mobiltelefons (Teilansicht)
Röntgenbild eines hardware-manipulierten Mobiltelefons (Teilansicht)

Bild: Euroforum 2006: Wilfried Karden, NRW Abwehr von Wirtschaftsspionage
Air Gap Security I

Bild: Euroforum 2006: Wilfried Karden, NRW Abwehr von Wirtschaftsspionage
(TS/SCI/REL) COTTONMOUTH-II (CM-II) is a Universal Serial Bus (USB) hardware Host Tap, which will provide a covert link over USB link into a targets network. CM-II is intended to be operate with a long haul relay subsystem, which is co-located within the target equipment. Further integration is needed to turn this capability into a deployable system.

(TS/SCI/REL) CM-II will provide software persistence capability, “in-field” re-programmability, and covert communications with a host software implant over the USB. CM-II will also communicate with Data Network Technologies (DNT) software (STRAIGHTBIZARRE) through a covert channel implemented on the USB, using this communication channel to pass commands and data between hardware and software implants. CM-II will be a GENIE-compliant implant based on CHIMNEYPOLL.

(TS/SCI/REL) CM-II consists of the CM-I digital hardware and the long haul relay concealed somewhere within the target chassis. A USB 2.0 HS hub with switches is concealed in a dual stacked USB connector, and the two parts are hard-wired, providing an intra-chassis link. The long haul relay provides the wireless bridge into the target’s network.

COTTONMOUTH - II (CM-II) CONOP
ANT Covert Network Scenario

High Side

Low Side

Status: Availability – September 2008
Unit Cost: 50 units: $200K

POC: S3223, @nsa.ic.gov
ALT POC: S3223, @nsa.ic.gov

Derived From: NSAICSSM 1/52
Dated: 20070108
Declassify On: 20320108
Inside hardware chip

- **Gaming consoles**
 - High focus on software security
 - Preventing the consoles from running pirated games
 - http://dl.acm.org/citation.cfm?id=777347

- **Backdoor in military chip**
 - Found backdoor
 - Able to extract encryption keys
 - http://link.springer.com/chapter/10.1007%2F978-3-642-33027-8_2
 - http://defensetech.org/2012/05/30/smoking-gun-proof-that-military-chips-from-china-are-infected/

- **Hardware backdooring is practical**
 - “[..] an attacker can use the underlying hardware to circumvent the software countermeasures.”
 - detection just via hashed firmware: Malware Protection checks only Software
 - https://www.youtube.com/watch?v=yRxDvkKBMTc: Very good!

Updates

- Signed driver with vulnerability installs unsigned virtual box driver for installing / updating malware

- Installing and exploiting vulnerability in (trusted) signed VirtualBox-driver as step-stone to install its malicious unsigned drivers. (SNAKE 2014 http://info.baesystemsdetica.com/rs/baesystems/images/snake_whitepaper.pdf)

- Performing Man-In-The-Middle attack:
 - Pretend to be the update server and provide fake Flash / iTunes / Firefox
 - Inject malicious code to benign executables that are passing through the network in control of the attacker.
Combination

- Multiple pieces of code makes little or no meaning, but together they make up the malicious code.

- Can be distributed in two or more of the following ways:
 - Operating system software
 - Be a part of popular applications or an additional application
 - Added in development process
 - Added into hardware or added as extra hardware
 - Sent through updates from trusted vendors*
 - ...

*Requires either to “collaborate with” or “hack” a vendor, or ”inject an undercover employee”.

⇒ Combination makes the attack almost impossible to detect ...
 Ideal: stealth & untraceable, immune to malware detection: see appendix A1
To whom we should trust …

- Find a trusted supplier and consider complete supply chain for security

- Nationalisation of IT: software, hardware, legal framework

- To whom we should not trust:
Alike many other states: 250 million dollar / year NSA fund to weaken security products*

"The third is the deliberate sabotaging of security. The primary example we have of this is the NSA's BULLRUN program, which tries to "insert vulnerabilities into commercial encryption systems, IT systems, networks and endpoint communication devices." This is the worst of the NSA's excesses, because it destroys our trust in the Internet, weakens the security all of us rely on and makes us more vulnerable to attackers worldwide. “

* www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
Eindringen in jedes Computer System, ZDF World Wide War
Data in Transition: Transferring Data to the Attacker

- Technical options:
 - Transferring Data over the Internet
 - Plain or using encryption (for hiding purposes) to “normal” names
 - During Updates
 - Embedded into unused fields in protocols
 - Embedded into maintenance Protocol
 - Hiding origin by using many proxies
 - TOR
 - Hidden Collection Infrastructure (Information) (CitizenLab, 2014)
 - https://citizenlab.org/2014/02/mapping-hacking-teams-untraceable-spyware/

- Transferring Data without connect to internet
 - Employee using USB-stick
 - Physically collect data (HW maintenance)
 - Locally connected PC without internet using “proxy server”
 - Radio access (COTTONMOUTH http://leaksources.files.wordpress.com/2013/12/usa-ant-cottonmouth-iii.jpg)
Part II
Attacks in action
A: Without supplier support
Step 1: Identifying Vulnerabilities

- **Published vulnerabilities** (Patch available, Attack suite available ➔ Script kiddies)

- **Vulnerability market** buy or rent a vulnerability **as service to governments**
 - Commercial companies as e.g. VUPEN for zero day exploits
 - Providing “lawful interception” e.g. (Hacking Team, Gamma International, Blue Coat etc.) **as service to criminals (crimeware as a service, no ethical conduct)**
 - black market: zero exploits
 - crime as a service. With explicit business conditions *

- Self-researched **vulnerability by engaged hacker team** (in-house or any others …)

Mandiant attack cycle

- Exploited vulnerability
- Distributed e.g. by spear phishing or watering hole attack
B: With supplier support
Accessing data with legitimation by Terms & Conditions

We use information as otherwise permitted by law.

We may share information with third parties.
We will share information within the NETGEAR family of companies. This includes VueZone, for example.

We may share information with third parties who provide services for us. For example, we share information with vendors who help us send emails and operate our websites. We also share information to fulfill your purchases.

We may share information with our business partners. For example, share information with our partners that run our applications.

We may share information with any successor to all or part of our business. For example, if all or part of our business was sold we may give our customer list as part of that transaction.

We will share information if we think we have to in order to comply with the law or to protect ourselves. For example, we will share information to respond to a court order or subpoena. We may also share it if a government agency or investigatory body requests. We might also share information when we are investigating potential fraud. We may share information for other reasons we may describe to you.

You have certain choices about our marketing and tracking tools.

(Image: Netgear NAS, published Terms and Conditions, accessed March 31, 2014)
Service provider opens for government access to user data

Schematic arrow: Government get direct access to their targets
Collaboration with companies via PRISM (e.g. USA)

 Principally governments act along equal lines to perform their tasks.

 USA is in common with many other nations ...
On big data analytics: Data & Metadata

e.g. NSA X-keyscore, dishfire (collection of millions of text messages), prefer

DNI = Digital Network Intelligence

www.theguardian.com/world/interactive/2013/jul/31/nsa-xkeyscore-program-full-presentation
NSA is more than “NCIS” or “Homeland”
New form of mining: data mining

http://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
Government code in products for “lawful interception”

- Technical principle
 - Add government access option in products
e.g. using nation-state sponsored algorithms and program code, e.g. NSA key
 - Giving the government information on undisclosed vulnerabilities
 - Allowing governments targeted access based on identifiers to specific customer information, using company software components (e.g. updates providing access as e.g. Trojan horse, team viewer)

References not have been found for each case
Technical options for attacks

Without supplier support:

- Publicly known vulnerabilities
 - Script kiddies
- Vulnerabilities as a service
 - rented or bought for Crime Scene or Government
- Self-researched Vulnerabilities
- Terms & Conditions
- Direct Access to Servers
 - e.g. PRISM
- Lawful Interception

With supplier support of commercial off-the-shelf software / service

- Big data analytics
 - statistic criteria evaluated by algorithms
 - very cheap
 - stats only
 - cheap
Mitigation I

- Regularly patch your operating system and applications.

- Always update to the newest anti-virus definitions.
 - Be aware that some anti-virus vendors might decide to not detect surveillance software used for lawful interception by governments in their country of origin.
Technical options for attacks

Without supplier support:
- Publicly known vulnerabilities
 - Script kiddies
- Vulnerabilities as a service
 - rented or bought for Crime Scene or Government
- Self-researched Vulnerabilities
- Terms & Conditions
- Direct Access to Servers
 - e.g. PRISM

With supplier support of commercial off the shelf software / service
- Lawful Interception

Big data analytics statistic criteria evaluated by algorithms
- Very cheap stats only
- Very high effort
- Moderate prize
- Cheap
- Cheap
Mitigation II

- Mitigation I + :
- Exclusively use software and hardware from vendors you trust, including services
 - You need to trust all steps of their Supply Chain (feasible? If production is worldwide distributed)
 - Even one single untrusted product could harm your whole system (zero tolerance)
Technical options for attacks

Without supplier support:
- Publicly known vulnerabilities
 - Script kiddies
 - Vulnerabilities as a service rented or bought for Crime Scene or Government
- Self-researched Vulnerabilities
- Terms & Conditions
- Direct Access to Servers
 - e.g. PRISM

With supplier support of commercial off the shelf software/service:
- Lawful Interception
Mitigation III

- Mitigation II + :
- Use strong encryption only and avoid proprietary encryption solutions, e.g. BitLocker. (B. Schneier 2013)
- Note: Any plain information sent through the internet will most likely be collected and analyzed: Be aware!
Technical options for attacks

Without supplier support:

- Publicly known vulnerabilities
 - Script kiddies
 - cheap
- Vulnerabilities as a service
 - rented or bought for Crime Scene or Government
 - Moderate prize
- Self-researched Vulnerabilities
 - Very high effort
- Terms & Conditions
 - cheap
- Direct Access to Servers
 - e.g. PRISM
 - Big data analytics statistic criteria evaluated by algorithms
 - very cheap
 - stats only
 - cheap

With supplier support of commercial of the shelf software / service:

- Lawful Interception
Mitigation IV

- Mitigation III + :
- Use trusted sophisticated professional security services, including monitoring, intrusion detection / prevention, statistical analysis, zero day exploit disclosure, sandboxing (for malware code detection) for the entire network.
Mitigation V: Data in transition

- Mitigation IV + :
- Use strong encryption for communication (VPN, HTTPS, etc.) ➔ protects against content monitoring
- + Use proxy chains with TOR or equivalent services ➔ traceability of the endpoints is made costly ➔ big data analytics on connection data is made costly
Technical options for attacks
Blue Eye Version:

What we want to see

Without supplier support:

- Publicly known vulnerabilities
 - Script kiddies
 - Cheap

- Vulnerabilities as a service
 - rented or bought for Crime Scene or Government
 - Moderate prize

- Self-researched Vulnerabilities
 - Very high effort

With supplier support of commercial off the shelf software / service:

- Terms & Conditions
 - cheap

- Direct Access to Servers
 - e.g. PRISM
 - Big data analytics statistic criteria evaluated by algorithms
 - very cheap stats only

- Lawful Interception
 - cheap
Other Assumptions

- All governments do their job i.e. there is **no trusted supplier**
- In spite of all security expertise and prevention there is **no relevant successful protection against zero day exploits and full professional target software attacks: Advanced Persistent Threats (APT)**.
- Big data analytics can be avoided by strong encryption on both: data at rest and data in transition. However, most common applications do not support encryption, like social media, web, etc. i.e. the wish for visibility supports big data analytics
 Is Facebook or the Facebook user the product?
Technical options for attacks

Realistic Version today:

What we hate to see

Without supplier support:

- Publicly known vulnerabilities
 - Script kiddies

- Vulnerabilities as a service
 - rented or bought for Crime Scene or Government

- Self-researched Vulnerabilities

With supplier support of commercial off the shelf software / service:

- Terms & Conditions

- Direct Access to Servers
 - e.g. PRISM

- Lawful Interception

Big data analytics statistic criteria evaluated by algorithms

very cheap stats only

cheap

Moderate prize

Very high effort

Cheap
Part III
Information Superiority and “Qui bono”
Qui bono

- Economical interest for hackers (& states)
- Hacktivist are politically driven … difficult to estimate
- Information superiority
 - Richard Clarke on Trust
 - Chinese “We do everything to …
Chinas Absichten: Wir werden die Dominanz einer Nation im Cyber Space nicht zulassen
US-Cyber-Guru: «Eure Daten sind nirgends sicher»

Bei der Speicherung von Daten in lokalen Clouds, wie etwa in der Schweiz, gehe es nur ums Geschäft, nicht um den Schutz der Informationen, ist Richard Clarke, langjähriger Berater des Weißen Hauses, überzeugt.

Quelle: Computerworld, Von Jens Stark, 25.02.2014 11:00.
Final Thoughts I

- If a nation-state wants to hack you, they will succeed to do so. (B. Schneier 2013)

- Internet is and always will be public space!
 - Do not let it stop you, but be aware of the problem
 - Don’t think, because you know, you should completely change your behavior.
 - Use it for public and publicity purposes!
Final Thoughts II

Richard Clarke: Drei Gesetze zur Cyber-Sicherheit:

1. Kaufe keinen Computer! Aber wenn Du wirklich eine kaufen musst …
2. Schalte den Computer nicht ein! Aber wenn Du ihn wirklich einschalten musst …
3. Schliesse den Computer nicht ans Netz an!

Und wie sollen wir uns verhalten?

1. Die Tatsache, dass man die Sache besser versteht, ändert nichts am täglichen Leben.
2. Für viele Bereiche ist es irrelevant, ob jemand mithört.
3. Auswertungen sind kostspielig und werden meistens begründet gemacht!
4. Grosse Sorge: Unser Daten bleiben lebenslange zugreifbar … (jederzeit kann nachuntersucht werden) ➔ Seien Sie datensparsam!!!
5. Für wirklich Vertrauliches: Wenden Sie die drei Gesetze an!
Nächste Präsentationen

- **Prof. Dr. Jürg Gutknecht (ETHZ und designierter Präsident SI)** macht seine Ausführungen zum Thema «Was kann im Betriebssystem und in der Hardware versteckt werden?».

- **Andreas Wuchner (CTO Strategy Group, HP Enterprise Security Services)** zeigt auf, wie hochsichere System funktionieren, unter anderem am Beispiel einer sicheren Videokonferenz.

- **Prof. Dr. Donald Kossmann (Institut für Informationssysteme, ETHZ)** führt u.a. aus, wie mit Hardware Sicherheit erzeugt werden kann.

- **Dr. Jan Camenisch (IBM Research Lab Zürich)** befasst sich mit Privatsphäre und Überwachung sowie den dazugehörigen technologischen Schutzmöglichkeiten.
Appendix
Companies were aware of that NSA was collection information from them

Schneier on NSA spying
- http://bigdata.csail.mit.edu/node/154

Mandiant attack cycle

When companies became a part of PRISM
Video References

- Commercialized surveillance software for governments:
 http://www.hackingteam.it/index.php/remote-control-system
Goals: create the perfect backdoor

- Persistent
- Stealth (0 hostile code on the machine)
- Portable (OS independant)
- Remote access, remote updates
- State level quality: plausible deniability, non attribution
- Cross network perimeters (firewalls, auth proxy)
- Redundancy
- Non detectable by AV (goes without saying...)
Any information you send can be collected

- Anything in plaintext that passes through central points of a network (e.g. telephone or Internet) can be collected and stored for a very long time.
 - Location information
 - Messages containing sensitive information
 - Web-camera images
 - “[..] the program saved one image every five minutes from the users' feeds, partly to comply with human rights legislation, and also to avoid overloading GCHQ's servers.”
 - Captures also sexually explicit images

- Encryption can protect the confidentiality
 - Some data can still be read
 - Who are talking to whom (Connection data)
 - Encrypted data can be deciphered if it has been used weak- or intentionally flawed encryption algorithms.
 - In most cases it can not be deciphered, but can be stored if it is of high importance.
 - In order to circumvent encryption can the government instead compromise the endpoint (e.g. computer, or mobile device).
 - Video: http://www.hackingteam.it/index.php/remote-control-system